Laplace#
- class pylit.models.Laplace(tau, mu, sigma)#
Bases:
LinearRegressionModel
This is the linear regression model with Gaussian model functions.
- kernel(omega, param)#
Evaluate the Laplacian kernel function for a given set of parameters.
This method overrides
kernel()
.- Parameters:
omega (
ndarray
[float64
]) – Discrete frequency axis.param (
List
[float
]) – Parameter tuple [mu, sigma].
- Return type:
ndarray
- Returns:
Values of the Laplacian kernel
\[K(\omega; \mu, \sigma) = \frac{1}{2 \sigma} \exp\Big(-\frac{|\omega-\mu|}{\sigma}\Big).\]
- ltransform(tau, param)#
Evaluate the Laplace-transformed Laplacian kernel at the discrete time axis.
This method overrides
ltransform()
.- Parameters:
tau (
ndarray
[float64
]) – Discrete time axis.param (
List
[float
]) – Parameter tuple [mu, sigma].
- Return type:
ndarray
[float64
]- Returns:
Values of the Laplace-transformed Laplacian kernel
\[\widehat{K}(\tau; \mu, \sigma) = \frac{\exp(-\mu \tau)}{1 - \sigma^2 \tau^2}.\]