CDF L2 Fitting#

pylit.methods.cdf_l2_fit.cdf_l2_fit(D, E, lambd)#

This is the Least Squares Cumulative Distribution Function (CDF) L2 method. The interface is described in Methods.

The objective function

\[f(u,w,\lambda) = \frac{1}{2} \| \widehat u - \widehat w\|^2_{L^2(\mathbb{R})} + \frac{1}{2} \lambda \| \mathrm{CDF}[u - w] \|_{L^2(\mathbb{R})}^2\]

is implemented as

\[f(\boldsymbol{\alpha}) = \frac{1}{2} \| \boldsymbol{R} \boldsymbol{\alpha} - \boldsymbol{F} \|^2_2 + \frac{1}{2} \lambda \left( \sum_{j=1}^n \sum_{i=1}^j(\boldsymbol{E} \boldsymbol{\alpha} - \boldsymbol{D})_i^2 \right)\]

with the gradient

\[\nabla_{\boldsymbol{\alpha}} f(\boldsymbol{\alpha}) = \boldsymbol{R}^\top(\boldsymbol{R} \boldsymbol{\alpha} - \boldsymbol{F}) + \lambda \boldsymbol{E}^\top \boldsymbol{W} (\boldsymbol{E} \boldsymbol{\alpha} - \boldsymbol{D})\]

the learning rate

\[\eta = \frac{1}{\| \boldsymbol{R}^\top \boldsymbol{R} + \lambda \boldsymbol{E}^\top \boldsymbol{W} \boldsymbol{E} \|}\]

and the solution

\[\boldsymbol{\alpha}^* = (\boldsymbol{R}^\top \boldsymbol{R} + \lambda \boldsymbol{E}^\top \boldsymbol{W} \boldsymbol{E})^{-1} (\boldsymbol{R}^\top \boldsymbol{F} + \lambda \boldsymbol{E}^\top \boldsymbol{W} \boldsymbol{D})\]

where

  • \(\boldsymbol{R}\): Regression matrix,

  • \(\boldsymbol{F}\): Target vector,

  • \(\boldsymbol{E}\): Evaluation matrix,

  • \(\boldsymbol{D}\): Default model vector,

  • \(\boldsymbol{W}\): Weight matrix,

  • \(\boldsymbol{\alpha}\): Coefficient vector,

  • \(\lambda\): Regularization parameter,

  • \(n\): Number of samples.

Return type:

Method