L2 Fitting#

pylit.methods.l2_fit.l2_fit(D, E, lambd)#

This is the L2 fitting method. The interface is described in Methods.

The objective function

\[f(u, w, \lambda) = \frac{1}{2} \| \widehat u - \widehat w\|^2_{L^2(\mathbb{R})} + \frac{1}{2} \lambda \| u - w \|_{L^2(\mathbb{R})}^2,\]

is implemented as

\[f(\boldsymbol{\alpha}) = \frac{1}{2} \| \boldsymbol{R} \boldsymbol{\alpha} - \boldsymbol{F} \|^2_2 + \frac{1}{2} \lambda \| \boldsymbol{E} \boldsymbol{\alpha} - \boldsymbol{D} \|^2_2,\]

with the gradient

\[\nabla_{\boldsymbol{\alpha}} f(\boldsymbol{\alpha}) = \boldsymbol{R}^\top(\boldsymbol{R} \boldsymbol{\alpha} - \boldsymbol{F}) + \lambda \boldsymbol{E}^\top(\boldsymbol{E} \boldsymbol{\alpha} - \boldsymbol{D}),\]

the learning rate

\[\eta = \frac{1}{\| \boldsymbol{R}^\top \boldsymbol{R} + \lambda \boldsymbol{E}^\top \boldsymbol{E} \|},\]

and the solution

\[\boldsymbol{\alpha}^* = (\boldsymbol{R}^\top \boldsymbol{R} + \lambda \boldsymbol{E}^\top \boldsymbol{E})^{-1} (\boldsymbol{R}^\top \boldsymbol{F} + \lambda \boldsymbol{E}^\top \boldsymbol{D}),\]

where

  • \(\boldsymbol{R}\): Regression matrix,

  • \(\boldsymbol{F}\): Target vector,

  • \(\boldsymbol{E}\): Evaluation matrix,

  • \(\boldsymbol{D}\): Default model vector,

  • \(\boldsymbol{\alpha}\): Coefficient vector,

  • \(\lambda\): Regularization parameter,

  • \(n\): Number of samples.

Return type:

Method