Cauchy#
- class pylit.models.Cauchy(tau, mu, sigma)#
Bases:
LinearRegressionModel
This is the linear regression model with Cauchy model functions.
- kernel(omega, param)#
Evaluate the Cauchy kernel function for a given set of parameters.
This method overrides
kernel()
.- Parameters:
omega (
ndarray
[float64
]) – Discrete frequency axis.param (
List
[float
]) – Parameter tuple [mu, sigma].
- Return type:
ndarray
- Returns:
Values of the Cauchy kernel
\[K(\omega; \mu, \sigma) = \frac{\sigma}{\pi ((\omega-\mu)^2 + \sigma^2)}.\]
- ltransform(tau, param)#
Evaluate the Laplace-transformed Cauchy kernel at the discrete time axis.
This method overrides
ltransform()
.- Parameters:
tau (
ndarray
[float64
]) – Discrete time axis.param (
List
[float
]) – Parameter tuple [mu, sigma].
- Return type:
ndarray
[float64
]- Returns:
Laplace-transformed kernel
\[\widehat K(\tau; \mu, \sigma) = \exp(-\mu \tau - \sigma |\tau|).\]