Cauchy#
- class pylit.models.Cauchy(tau, mu, sigma)#
Bases:
LinearRegressionModelThis is the linear regression model with Cauchy model functions.
- kernel(omega, param)#
Evaluate the Cauchy kernel function for a given set of parameters.
This method overrides
kernel().- Parameters:
omega (
ndarray[float64]) – Discrete frequency axis.param (
List[float]) – Parameter tuple [mu, sigma].
- Return type:
ndarray- Returns:
Values of the Cauchy kernel
\[K(\omega; \mu, \sigma) = \frac{\sigma}{\pi ((\omega-\mu)^2 + \sigma^2)}.\]
- ltransform(tau, param)#
Evaluate the Laplace-transformed Cauchy kernel at the discrete time axis.
This method overrides
ltransform().- Parameters:
tau (
ndarray[float64]) – Discrete time axis.param (
List[float]) – Parameter tuple [mu, sigma].
- Return type:
ndarray[float64]- Returns:
Laplace-transformed kernel
\[\widehat K(\tau; \mu, \sigma) = \exp(-\mu \tau - \sigma |\tau|).\]