Configuration#
- class pylit.core.data_classes.Configuration(path_F, path_D, path_S=None, path_L_S=None, path_prep=None, path_res=None, selection_name='simulated_annealing', n=100, window=5, widths=5, non_negative=True, detailed_balance=True, model_name='Gauss', method_name='l1_reg', lambd=None, optimizer_name='nesterov', tol=1e-15, maxiter=1000, adaptive=False, adaptive_residuum_mode=False, c0=None, svd=False, protocol=False)#
Bases:
object
Represents the configuration of an optimization problem.
This dataclass stores all paths, numerical parameters, and algorithmic options required to run the solver.
- Parameters:
path_F (
Path
) – Input path of the Laplace transformed data. (required)path_D (
Path
) – Input path of the Default model. (required)path_S (
Path
|None
) – Output path of the model. | None = Nonepath_L_S (
Path
|None
) – Output path of the laplace transformed model. | None = Nonepath_prep (
Path
|None
) – Output path of the Preparation dataclass. | None = Nonepath_res (
Path
|None
) – Output path of the Result dataclass. | None = Noneselection_name (
Literal
['simulated_annealing'
,'heuristic'
]) – Strategy for selecting the models parameters. Choices includesimulated_annealing
(default) andheuristic
.n (
int
) – Number of support points in the frequency domain \(\omega\).window (
int
) – The window size when searching for the optimal kernel widths. Only used inheuristic
.widths (
int
) – The total number of kernel widths.non_negative (
bool
) – Enforces non-negativity for the Default model.detailed_balance (
bool
) – IfTrue
, imposes the detailed balance condition.model_name (
Literal
['Gauss'
,'Laplace'
,'Cauchy'
,'Uniform'
]) – Name of the kernel model to use for optimization.method_name (
Literal
['l1_reg'
,'l2_reg'
,'tv_reg'
,'var_reg'
,'l2_fit'
,'max_entropy_fit'
,'cdf_l2_fit'
]) – Optimization method to be applied. Choices include regularization- and fit-based approaches.lambd (
ndarray
|float
|None
) – Regularization parameter. Can be a scalar, an array of values, orNone
.optimizer_name (
Literal
['nnls'
,'nesterov'
,'adam'
]) – The numerical optimizer used to solve the problem.tol (
float
) – Convergence tolerance for the optimizer.maxiter (
int
) – Maximum number of iterations allowed for the optimization.adaptive (
bool
) – Whether to use the decorator functionadaptive()
.adaptive_residuum_mode (
bool
) – IfTrue
, the residuum_mode inadaptive()
is enabled.c0 (
ndarray
|None
) – Initial guess for the solution. IfNone
, a default (zeros) is used.svd (
bool
) – Whether to apply SVD-based dimensionality reduction before solving. Should be only applied to regularization methodsl1_reg
andl2_reg
.protocol (
bool
) – IfTrue
, prints a protocol of the optimization run.