Configuration#
- class pylit.core.data_classes.Configuration(path_F, path_D, path_S=None, path_L_S=None, path_prep=None, path_res=None, selection_name='simulated_annealing', n=100, window=5, widths=5, non_negative=True, detailed_balance=True, model_name='Gauss', method_name='l1_reg', lambd=None, optimizer_name='nesterov', tol=1e-15, maxiter=1000, adaptive=False, adaptive_residuum_mode=False, c0=None, svd=False, protocol=False)#
Bases:
objectRepresents the configuration of an optimization problem.
This dataclass stores all paths, numerical parameters, and algorithmic options required to run the solver.
- Parameters:
path_F (
Path) – Input path of the Laplace transformed data. (required)path_D (
Path) – Input path of the Default model. (required)path_S (
Path|None) – Output path of the model. | None = Nonepath_L_S (
Path|None) – Output path of the laplace transformed model. | None = Nonepath_prep (
Path|None) – Output path of the Preparation dataclass. | None = Nonepath_res (
Path|None) – Output path of the Result dataclass. | None = Noneselection_name (
Literal['simulated_annealing','heuristic']) – Strategy for selecting the models parameters. Choices includesimulated_annealing(default) andheuristic.n (
int) – Number of support points in the frequency domain \(\omega\).window (
int) – The window size when searching for the optimal kernel widths. Only used inheuristic.widths (
int) – The total number of kernel widths.non_negative (
bool) – Enforces non-negativity for the Default model.detailed_balance (
bool) – IfTrue, imposes the detailed balance condition.model_name (
Literal['Gauss','Laplace','Cauchy','Uniform']) – Name of the kernel model to use for optimization.method_name (
Literal['l1_reg','l2_reg','tv_reg','var_reg','l2_fit','max_entropy_fit','cdf_l2_fit']) – Optimization method to be applied. Choices include regularization- and fit-based approaches.lambd (
ndarray|float|None) – Regularization parameter. Can be a scalar, an array of values, orNone.optimizer_name (
Literal['nnls','nesterov','adam']) – The numerical optimizer used to solve the problem.tol (
float) – Convergence tolerance for the optimizer.maxiter (
int) – Maximum number of iterations allowed for the optimization.adaptive (
bool) – Whether to use the decorator functionadaptive().adaptive_residuum_mode (
bool) – IfTrue, the residuum_mode inadaptive()is enabled.c0 (
ndarray|None) – Initial guess for the solution. IfNone, a default (zeros) is used.svd (
bool) – Whether to apply SVD-based dimensionality reduction before solving. Should be only applied to regularization methodsl1_regandl2_reg.protocol (
bool) – IfTrue, prints a protocol of the optimization run.