Maximum Entropy Fitting#

pylit.methods.max_entropy_fit.max_entropy_fit(D, E, lambd)#

This is the maximum entropy fitting method. The interface is described in Methods.

The objective function

\[f(u, w, \lambda) = \frac{1}{2} \| \widehat u - \widehat w\|^2_{L^2(\mathbb{R})} - \lambda \int_{-\infty}^\infty u(\omega) \log \left( \frac{u(\omega)}{w(\omega)} \right) d\omega,\]

is implemented as

\[f(\boldsymbol{\alpha}) = \frac{1}{2} \| \boldsymbol{R} \boldsymbol{\alpha} - \boldsymbol{F} \|^2_2 + \lambda \sum_{i=1}^n (\boldsymbol{E} \boldsymbol{\alpha})_i \log \frac{(\boldsymbol{E} \boldsymbol{\alpha})_i}{D_i},\]

with the gradient

\[\nabla_{\boldsymbol{\alpha}} f(\boldsymbol{\alpha}) = \boldsymbol{R}^\top(\boldsymbol{R} \boldsymbol{\alpha} - \boldsymbol{F}) + \lambda \boldsymbol{E}^\top(\log \boldsymbol{E} \boldsymbol{\alpha} - \log \boldsymbol{D} + 1),\]

the learning rate

\[\eta = \frac{1}{\| \boldsymbol{R}^\top \boldsymbol{R} \| + \lambda \|\boldsymbol{E}\|^2},\]

and the solution

\[\textit{No closed form solution available},\]

where

  • \(\boldsymbol{R}\): Regression matrix,

  • \(\boldsymbol{F}\): Target vector,

  • \(\boldsymbol{E}\): Evaluation matrix,

  • \(\boldsymbol{D}\): Default model vector,

  • \(\boldsymbol{\alpha}\): Coefficient vector,

  • \(\lambda\): Regularization parameter,

  • \(n\): Number of samples.

Return type:

Method