Preparation#
- class pylit.core.data_classes.Preparation(tau, F, beta, max_F, scaled_F, omega, D, int_D, scaled_D, exp_D, std_D, moments_D, forward_D, eps_D, max_eps_D)#
Bases:
object
Represents the output of the preparation of the data.
- Parameters:
tau (
ndarray
) – Discrete time axis \(\tau\) on which the input data \(F(\tau)\) is defined.F (
ndarray
) – Raw input data defined on \(\tau\).beta (
float
) – Inverse temperature parameter \(\beta = 1/T\).max_F (
float
) – Maximum value of \(F(\tau)\), used for normalization.scaled_F (
ndarray
) – Normalized version of \(F(\tau)\) to improve numerical stability.omega (
ndarray
) – Discrete frequency axis \(\omega\) on which the default model \(D(\omega)\) is defined.D (
ndarray
) – Default model for the dynamic structure factor \(S(\omega)\).int_D (
float
) – Integral of the default model \(D(\omega)\) over omega, representing the zeroth moment (normalization).scaled_D (
ndarray
) – Normalized version of \(D(\omega)\), ensuring unit integral.exp_D (
float
) – Expectation value (first moment) of the default model \(D(\omega)\).std_D (
float
) – Standard deviation of the default model \(D(\omega)\).moments_D (
ndarray
) – The i-th entry corresponds to the moment \(\mu_i = \int d\omega D(\omega)\), with indices covering \(i=-1, 0, 1, ..., 10\).forward_D (
ndarray
) –Laplace transform of
scaled_D
onto \(\tau\), computed using the trapezoidal rule as\[\text{forward_D}_i = \sum_j w_j \ \text{scaled_D}_j \ \exp(-\omega_j \tau_i),\]where \(w_j\) are the trapezoidal integration weights corresponding to the frequency grid \(\omega\).
eps_D (
ndarray
) – Pointwise error between F and forward_D.max_eps_D (
float
) – Maximum absolute error between F and forward_D.