Variance Regularization#

pylit.methods.var_reg.var_reg(omegas, E, lambd)#

This is the variance regularization method. The interface is described in Methods.

The objective function

\[\]

is implemented as

\[f(\boldsymbol{\alpha}) = \frac{1}{2} \| \boldsymbol{R} \boldsymbol{\alpha} - \boldsymbol{F} \|^2_2 + \frac{n}{2} \lambda \, \mathrm{Var}_{\boldsymbol{p}}[\boldsymbol{\omega}], \quad \boldsymbol{p} = E \boldsymbol{\alpha},\]

with the gradient

\[\nabla_{\boldsymbol{\alpha}} f(\boldsymbol{\alpha}) = \boldsymbol{R}^\top (\boldsymbol{R} \boldsymbol{\alpha} - \boldsymbol{F}) + \lambda \, (\mathbb{E}_{\boldsymbol{p}}[\boldsymbol{\omega}] - \bar{\omega}) \, E^\top \boldsymbol{\omega},\]

the learning rate

\[\eta = \frac{1}{\| \boldsymbol{R}^\top \boldsymbol{R} \| + (\lambda / k^2) \, \| \boldsymbol{E} \boldsymbol{\omega} \| \|\boldsymbol{E}\| \|\boldsymbol{\omega}\|}\]

and the solution

\[\textit{Solution not available.}\]

where

  • \(\boldsymbol{R}\): Regression matrix,

  • \(\boldsymbol{F}\): Target vector,

  • \(\boldsymbol{\omega}\): discrete frequency vector,

  • \(k\): length of the discrete frequency vector.

  • \(\bar{\omega}\): Mean of the discrete frequency vector \(\boldsymbol{\omega}\),

  • \(E\): Evaluation matrix,

  • \(\boldsymbol{\alpha}\): Coefficient vector,

  • \(\lambda\): Regularization parameter,

  • \(n\): Number of samples.

Return type:

Method