Gauss#

class pylit.models.Gauss(tau, mu, sigma)#

Bases: LinearRegressionModel

This is the linear regression model with Gaussian model functions.

kernel(omega, param)#

Evaluate the Gaussian kernel function for a given set of parameters.

This method overrides kernel().

Parameters:
  • omega (ndarray[float64]) – Discrete frequency axis.

  • param (List[float]) – Parameter tuple [mu, sigma].

Return type:

ndarray

Returns:

Values of the Gaussian kernel

\[K(\omega; \mu, \sigma) = \frac{1}{\sigma \sqrt{2 \pi}} \exp\Big(-\frac{1}{2} \frac{(\omega-\mu)^2}{\sigma^2}\Big).\]

ltransform(tau, param)#

Evaluate the Laplace-transformed Gaussian kernel at the discrete time axis.

This method overrides ltransform().

Parameters:
  • tau (ndarray[float64]) – Discrete time axis.

  • param (List[float]) – Parameter tuple [mu, sigma].

Return type:

ndarray[float64]

Returns:

Values of the Laplace-transformed Gaussian kernel

\[\widehat{K}(\tau; \mu, \sigma) = \exp\Big(-\mu \tau + \frac{1}{2} \sigma^2 \tau^2\Big).\]